I was recently given a set of Richard Feynman's lecture notes on Physics, after a friend had spotted that I had all of Feynman's paperback books; I can only say that I am stunned.
The paperbacks are incredibly good, but the lecture notes are so much better.
If you can get hold of a copy of these lectures notes, I thoroughly recommend that you do so.
You will not need an undergraduate degree in mathematics to get going with them. You will just need half a brain and a willingness to learn about how the Universe works.
Just check out what you get:
Volume 1. Mainly mechanics, radiation, and heat
Chapter 1. Atoms in motion
Chapter 2. Basic Physics
Chapter 3. The relation of physics to other sciences
Chapter 4. Conservation of energy
Chapter 5. Time and distance
Chapter 6. Probability
Chapter 7. The theory of gravitation
Chapter 8. Motion
Chapter 9. Newton's laws of dynamics
Chapter 10. Conservation of momentum
Chapter 11. Vectors
Chapter 12. Characteristics of force
Chapter 13. Work and potential energy (A)
Chapter 14. Work and potential energy (conclusion)
Chapter 15. The special theory of relativity
Chapter 16. Relativistic energy and momentum
Chapter 17. Space-time
Chapter 18. Rotation in two dimensions
Chapter 19. Center of mass; Moment of inertia
Chapter 20. Rotation in space
Chapter 21. The harmonic oscillator
Chapter 22. Algebra
Chapter 23. Resonance
Chapter 24. Transients
Chapter 25. Linear systems and review
Chapter 26. Optics: The principle of least time
Chapter 27. Geometrical optics
Chapter 28. Electromagnetic radiation
Chapter 29. Interference
Chapter 30. Diffraction
Chapter 31. The origin of the refractive index
Chapter 32. Radiation damping. Light scattering
Chapter 33. Polarization
Chapter 34. Relativistic effects in radiation
Chapter 35. Color vision
Chapter 36. Mechanisms of seeing
Chapter 37. Quantum behavior
Chapter 38. The Relation of Wave and particle viewpoints
Chapter 39. The kinetic theory of gases
Chapter 40. The principles of statistical mechanics
Chapter 41. The brownian movement
Chapter 42. Applications of kinetic theory
Chapter 43. Diffusion
Chapter 44. The laws of thermodynamics
Chapter 45. Illustrations of thermodynamics
Chapter 46. Ratchet and pawl
Chapter 47. Sound. The wave equation
Chapter 48. Beats
Chapter 49. Modes
Chapter 50. Harmonics
Chapter 51. Waves
Chapter 52. Symmetry in physical laws
Volume 2. Mainly electromagnetism and matter
Chapter 1. Electromagnetism
Chapter 2. Differential calculus of vector fields
Chapter 3. Vector integral calculus
Chapter 4. Electrostatics
Chapter 5. Application of Gauss' law
Chapter 6. The electric field in various circumstances
Chapter 7. The electric field in various circumstances (continued)
Chapter 8. Electrostatic energy
Chapter 9. Electricity in the atmosphere
Chapter 10. Dielectrics
Chapter 11. Inside dielectrics
Chapter 12. Electrostatic analogs
Chapter 13. Magnetostatics
Chapter 14. The magnetic field in various situations
Chapter 15. The vector potential
Chapter 16. Induced currents
Chapter 17. The laws of induction
Chapter 18. The Maxwell equations
Chapter 19. The principle of least action
Chapter 20. Solutions of Maxwell's equations in free space
Chapter 21. Solutions of Maxwell's equations with currents and charges
Chapter 22. AC circuits
Chapter 23. Cavity resonators
Chapter 24. Waveguides
Chapter 25. Electrodynamics in relativistic notation
Chapter 26. Lorentz transformations of the fields
Chapter 27. Field energy and field momentum
Chapter 28. Electromagnetic mass
Chapter 29. The motion of charges in electric and magnetic fields
Chapter 30. The internal geometry of crystals
Chapter 31. Tensors
Chapter 32. Refractive index of dense materials
Chapter 33. Reflection from surfaces
Chapter 34. The magnetism of matter
Chapter 35. Paramagnetism and magnetic resonance
Chapter 36. Ferromagnetism
Chapter 37. Magnetic materials
Chapter 38. Elasticity
Chapter 39. Elastic materials
Chapter 40. The flow of dry water
Chapter 41. The flow of wet water
Chapter 42. Curved space
Volume 3. Quantum mechanics
Chapter 1. Quantum behavior
Chapter 2. The relation of wave and particle viewpoints
Chapter 3. Probability amplitudes
Chapter 4. Identical particles
Chapter 5. Spin one
Chapter 6. Spin one-half
Chapter 7. The dependence of amplitudes on time
Chapter 8. The Hamiltonian matrix
Chapter 9. The ammonia maser
Chapter 10. Other two-state systems
Chapter 11. More two-state systems
Chapter 12. The hyperfine splitting in hydrogen
Chapter 13. Propagation in a crystal lattice
Chapter 14. Semiconductors
Chapter 15. The independent particle approximation
Chapter 16. The dependence of amplitudes on position
Chapter 17. Symmetry and conservation laws
Chapter 18. Angular momentum
Chapter 19. The hydrogen atom and the periodic table
Chapter 20. Operators
Chapter 21. The Schrödinger equation in a classical context: a seminar on superconductivity
Absolutely blinking marvellous.
3 comments:
kindly let me know that in E=mc2 (famous eqs given by Einstein) whether c2 (c square) stands only for denoting some numerical value in the equation or there is some evidence of a speed equal to the square of speed of light?
I think you're confusing me with Professor Feynman! :-)
I think you'll also find all the evidence you need for E=mc^2, in any hydrogen bomb (or even uranium bomb) explosion, in the last 60 years, where tiny amounts of nuclear mass turned into mass-ive amounts of electromagnetic energy (if you'll pardon the pun! ;-)
Must dash - my cold fusion experiment is warming up over in the corner.
C = 3e8 m/s, i.e. the speed of light is three times ten to the eighth power meters per second. The square of the speed of light, then, is 9e16 m^2/s^2, or nine times ten to the sixteenth power meters squared per second squared.
Post a Comment